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Abstract. It has been recently demonstrated experimentally that graphene, or single-layer carbon, is a
gapless semiconductor with massless Dirac energy spectrum. A finite conductivity per channel of order of
e2/h in the limit of zero temperature and zero charge carrier density is one of the striking features of this
system. Here we analyze this peculiarity based on the Kubo and Landauer formulas. The appearance of a
finite conductivity without scattering is shown to be a characteristic property of Dirac chiral fermions in
two dimensions.

PACS. 73.43.Cd Theory and modeling – 81.05.Uw Carbon, diamond, graphite – 03.65.Pm Relativistic
wave equations

Graphene, or single layer carbon [1], demonstrates unique
electronic properties. It has been shown recently [2,3]
that the charge carriers in graphene are massless Dirac
fermions with effective “velocity of light” of order of
106 m s−1. Graphene provides unexpected connections be-
tween condensed matter physics and quantum field theory;
in particular, a new kind of quantum Hall effect observed
in graphene, that is, half-integer quantum Hall effect [2–5]
can be considered as a consequence of the famous Atiyah-
Singer index theorem [2]. The latter guarantees the exis-
tence of macroscopically large number of chiral states with
zero energy in external magnetic field.

Another amazing property of graphene is the finite
minimal conductivity which is of the order of the conduc-
tance quantum e2/h per valley per spin; it is important
to stress that this is a “quantization” of the conductiv-
ity rather than of the conductance [2]. This is not only
very interesting conceptually but also important in light of
potential applications of graphene for ballistic field-effect
transistors [1]. Therefore the physical origin of the mini-
mal conductivity is worth the special consideration which
is a subject of this Note.

Numerous considerations of the conductivity of a two-
dimensional massless Dirac fermion gas do give this value
of the minimal conductivity with the accuracy of some fac-
tor of order of unity [6–13]. It is really surprising that in
this case there is a final conductivity for an ideal crys-
tal, that is, without any scattering processes [8]. This
fact is important since without complete understand-
ing of the ideal crystal case one can hardly hope to
have a reliable answer for the realistic case with disorder
and electron-electron interactions. Here we use the Lan-
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dauer formula [14] to clarify the physical meaning of this
anomaly.

We start with the Hamiltonian of a two-dimensional
gapless semiconductor

H = v
∑

p

Ψ †
pσpΨp (1)

and the corresponding expression for the current opera-
tor [15]

j = ev
∑

p

Ψ †
pσΨp =

∑

p

jp (2)

where v is the electron velocity, σ =(σx, σy) are Pauli

matrices, p is the momentum, and Ψ †
p =

(
ψ†

p1, ψ
†
p2

)

are pseudospinor electron operators. Here we omit spin
and valley indices (so, keeping in mind applications to
graphene, the results for the conductivity should be mul-
tiplied by 4 due to two spin projections and two conical
points per Brillouine zone). Straightforward calculations
give for the time evolution of the electron operators

Ψp (t) =
1
2

[
e−iεpt

(
1 +

pσ
p

)
+ eiεpt

(
1 − pσ

p

)]
Ψp (3)

and for the current operator

j (t) = j0 (t) + j1 (t) + j†1 (t)

j0 (t) = ev
∑

p

Ψ †
p

p (pσ)
p2

Ψp

j1 (t) =
ev

2

∑

p

Ψ †
p

[
σ − p (pσ)

p2
+
i

p
σ × p

]
Ψpe

2iεpt (4)
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where εp = vp/� is the particle frequency. The last term
in equation (4) corresponds to the “Zitterbewegung”, a
phenomenon connected with the uncertainty of the posi-
tion of relativistic quantum particles due to the inevitable
creation of particle-antiparticle pairs at the position mea-
surement [16,17]. Classical models for this phenomenon
are discussed, e.g., in reference [18] and references therein.

In terms of condensed matter physics, the Zitterbe-
wegung is nothing but a special kind of inter-band tran-
sitions with creation of virtual electron-hole pairs. The
unitary transformation generated by the operator Up =
1/

√
2(1 + impσ), where mp = (cosφp,− sinφp) and φp

is the polar angle of the vector p, diagonalizes the Hamil-
tonian Hp = diag (−vp, vp) and thus introduces electron
and hole states; after this transformation the oscillating
term in equation (4) corresponds to the inter-band tran-
sitions, e.g.

U †
pj

x
pUp = ev

( − cosφp −i sinφpe
−iφp+2iεpt

i sinφpe
iφp−2iεpt cosφp

)
.

(5)
To calculate the conductivity σ (ω) we will try first to use
the Kubo formula [19] which reads for two-dimensional
isotropic case:

σ (ω) =
1

2A

∞∫

0

dteiωt

β∫

0

dλ 〈j (t− iλ) j〉 (6)

where β = T−1 is the inverse temperature, A is the sam-
ple area. In the static limit ω = 0 taking into account On-
sager relations and analyticity of the correlators 〈j (z) j〉
for −β < Imz ≤ 0 one has [19]

σ =
β

4A

∞∫

−∞
dt 〈j (t) j〉 . (7)

Usually, for ideal crystals, the current operator commutes
with the Hamiltonian and thus j (t) does not depend on
time. In that case, due to equation (6) the frequency-
dependent conductivity contains only the Drude peak

σD (ω) =
π

2A
lim
T→0

〈
j2

〉

T
δ (ω) . (8)

Either the spectral weight of the Drude peak is finite and,
thus, the static conductivity is infinite, or it is equal to
zero. It is easy to check that for the system under consider-
ation the spectral weight of the Drude peak is proportional
to the modulus of the chemical potential |µ| (cf. Eq. (44)
of Ref. [13]) and thus vanishes at zero doping (µ = 0). It
is the Zitterbewegung, i.e. the oscillating term j1 (t) which
is responsible for nontrivial behavior of the conductivity
for zero temperature and zero chemical potential (that is,
the gapless semiconductor case). A straightforward calcu-
lation gives a formal result

σ =
πe2

2h

∞∫

0

dεεδ2 (ε) (9)

where one delta-function originates from the integration
over t in equation (7) and the second one — from the
derivative of the Fermi distribution function appearing
at the calculation of the average over product of Fermi-
operators. Of course, the square of the delta function is not
a well-defined object and thus equation (9) is meaningless
before specification of the way how one should regular-
ize the delta-functions. After regularization the integral
in equation (9) is finite, but its value depends on the reg-
ularization procedure. It is not surprising therefore that
two different ways of calculations in reference [8] led to
two different answers. Our derivation, at least, clarifies
the origin of these difficulties: it is the Zitterbewegung,
or, physically, the impossibility to localize ultrarelativis-
tic particles and to measure their coordinates.

At finite frequency and finite chemical potential the
Zitterbewegung contribution to the expression (6) coin-
cides with the result for inter-band conductivity found in
reference [13].

Despite this derivation cannot give us a correct numer-
ical factor, it opens new way to qualitative understanding
of more complicated situations. For example, the minimal
conductivity of order of e2/h per channel has been ob-
served experimentally also for the bilayer graphene [20]
with the energy spectrum drastically different from that
for the single-layer case. The bilayer graphene is a zero-
gap semiconductor with parabolic touching of the elec-
tron and hole bands described by the single-particle
Hamiltonian [20,21]

Hp =
(

0 (px − ipy)2 /2m
(px + ipy)

2 /2m 0

)
(10)

(here we ignore some complications due to large-scale hop-
ping processes which are important for a very narrow
range of the Fermi energies [21]). The Hamiltonian (10)
can be diagonalized by the unitary transformationUp with
the replacement φp → 2φp. Thus, the current operator
after the transformation takes the form (5) with the re-
placement v → p/m, e−iφp → e−2iφp . In contrast with
the single-layer case, the density of electron states for the
Hamiltonian (10) is finite at zero energy but the square
of the current is, vice versa, linear in energy. As a result,
we have the same estimation (9), with the accuracy of
additional factor 2.

To circumvent the problem of ambiguity in the expres-
sion for σ in equation (9) we now follow the alternative
Landauer approach. Let us assume that our sample is a
ring of length Ly in y direction; we will use Landauer
formula to calculate the conductance in x direction (see
Fig. 1). There is still an uncertainty in the sense that the
conductivity turns out to be dependent on the shape of
the sample. To have a final transparency we should keep
Lx finite. On the other hand, periodic boundary condi-
tions in y direction are nonphysical and we have to choose
Ly as large as possible to weaken their effects. Thus, for
two-dimensional situation one should choose Lx � Ly.
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Fig. 1. Geometry of the sample. Thick arrow shows the direc-
tion of current. ψt (solid line) and ψb (dashed line) are wave
functions of the edge states localized near the top and the bot-
tom of the sample, correspondingly.

In the coordinate representation the Dirac equation at
zero energy takes the form

(Kx + iKy)ψ1 = 0
(Kx − iKy)ψ2 = 0 (11)

where Ki = −i ∂
∂xi

. General solutions of these equations
are just arbitrary analytical (or complex conjugated ana-
lytical) functions:

ψ1 = ψ1 (x+ iy) ,
ψ2 = ψ2 (x− iy) . (12)

Due to periodicity in y direction both wave func-
tions should be proportional to exp (ikyy) where ky =
2πn/Ly, n = 0,±1,±2, .... This means that the depen-
dence on x is also fixed: the wave functions are propor-
tional to exp (±2πnx/Ly) . They correspond to the states
localized near the bottom and top of the sample (see
Fig. 1).

To use the Landauer formula, we should introduce
boundary conditions at the sample edges (x = 0 and
x = Lx). To be specific, let us assume that the leads are
made of doped graphene with the potential V0 < 0 and
the Fermi energy EF = vkF = −V0. The wave functions
in the leads are supposed to have the same y-dependence,
that is, ψ1,2 (x, y) = ψ1,2 (x) exp (ikyy) . Thus, one can try
the solution of the Dirac equation in the following form:

ψ1 (x) =

⎧
⎨

⎩

eikxx + re−ikxx, x < 0
aekyx, 0 < x < Lx

teikxx, x > Lx

ψ2 (x) =

⎧
⎨

⎩

eikxx+iφ − re−ikxx−iφ, x < 0
be−kyx, 0 < x < Lx

teikxx+iφ, x > Lx

(13)

where sinφ = ky/kF , kx =
√
k2

F − k2
y. From the condi-

tions of continuity of the wave functions, one can find the
transmission coefficient

Tn = |t (ky)|2 =
cos2 φ

cosh2(kyLx) − sin2 φ
. (14)

Further, one should assume that kFLx � 1 and put φ �
0 in equation (14). Thus, the trace of the transparency
which is just the conductance (in units of e2/h) is

TrT =
∞∑

n=−∞

1
cosh2(kyLx)

� Ly

πLx
. (15)

Assuming that the conductance is equal to σLy

Lx
one finds

the contribution to the conductivity equal to e2/(πh). Ex-
perimentally [2], it is close to e2/h, that is, roughly, three
times larger than our estimation. The same result has been
found earlier in reference [8] by one of the ways of deriva-
tion (the other one gives, instead, a factor π/8). Note also
that for the case of nanotubes (Lx � Ly) one has a con-
ductance e2/h per channel, in accordance with known re-
sults [22,23].

The result σ = e2/(πh) per valley per spin is found
here for the case of ideal crystal. If one calculates in
the simplest “bubble” approximation the conductivity in
the presence of weakly scattering impurities and then put
T = µ = 0 it leads to the same value [4,5,7,11,12]. How-
ever, one can hope that more transparent physical un-
derstanding of the origin of finite conductivity in ideal
crystals which is provided by the Landauer formula will
be useful to consider more complicated situations, such as
the case of bilayer [20].

I am thankful to Andreas Ludwig, Andre Geim, and Kostya
Novoselov for valuable discussions stimulating this work.

Note added: After this work was basically fin-
ished (cond-mat/0512337, revised version) I have be-
come aware of a relevant work by J. Tworzydlo, B.
Trauzettel, M. Titov, A. Rycerz, and C.W.J. Beenakker
(cond-mat/0603315) where a similar result for the trans-
mission coefficient (14) has been obtained, with a bit dif-
ferent choice of boundary conditions. They have found
also a sub-Poissonian shot noise in ideal graphene simi-
lar to that in disordered metals which gives a beautiful
example of the importance of electron Zitterbewegung.
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